

Summary on "Modeling Radiation Effects in Magnets and Material Response"

Nikolai Mokhov

Fermilab

Workshop on Radiation Effects
in Superconducting Magnet Materials
Fermilab
February 13-15, 2012

Presentations

- 1. Marek Turowski and Alex Fedoseyev (CFDRC): Advanced tools for physics-based modeling of radiation effects
- Nikolai Mokhov (FNAL): Radiation effect modeling: status, uncertainties and benchmarking needs
- Igor Rakhno (FNAL): Improved description of ion stopping power in compounds
- 4. Yosuke Iwamoto (JAEA): Radiation damage calculation in PHITS over a wide energy range
- 5. Vitaly Pronskikh (FNAL): Radiation studies for Mu2e magnets
- Reg Ronningen (MSU): Radiation environment and lifetime estimates for FRIB fragment separator superconducting magnets
- Meimei Li (ANL): Moving from DPA to changes in materials properties

CFDRC NanoTCAD

IC Layout → 3D Model → 3D Mesh → Simulation

CFDRC MixCad Simulations vs. Laser SEE Test Data

Excellent Agreement: both in SET Amplitude and Duration

- CFDRC NanoTCAD / Mixed-Mode Tools <u>validated</u>!
- NG <u>identified critical spots</u> of the III-V Voltage Regulator design and is working on its <u>radiation hardening</u>.

Subject and Issues

What? Primarily, production solenoids of Mu2e, COMET and Muon Collider (E_p = 1-15 GeV), but also other superconducting setups in radiation fields

Issues:

- Maximize useful particle & minimize background particle yields (also a primary source of all radiation effects considered here)
- Quench, integrity & lifetime: power density and integrated dose in critical components, e.g., SC coils, organic materials etc.
- Radiation damage to superconducting and stabilizing materials: DPA, helium gas production, integrated particle flux
- > ES&H aspects: shielding, nuclide production, residual dose, impact on environment. Not forget electronics (SEU etc.)

Attacked via thorough simulations.

How reliable are they?

Pion Production Cross-Sections at 3-15 GeV/c

3-15 GeV/c p on Be, Cu and Ta: GEANT4 models vs HARP

INCL-HE vs HARP S. Pedoux, J. Cugnon

Particle and Nuclide Production at 1-15 GeV: Status and Needs

- Production x-sections (total particle yields) modeled with the current versions of MARS15, FLUKA and INCL-HE agree within 10% with data. These code's event generators (for MARS15: CEM, LAQGSM and inclusive) predict general features of double differential xsections, but can disagree with data up to a factor of 2 to 3 in some phase space regions. There are noticeably larger problems with GEANT4 models.
- Nuclide production is described quite reliably by the event generators of the above three codes, although there are issues with some channels.
- Models/Codes: model developments in transition region (2-7 GeV) and at E_p =1-30 MeV; add PHITS predictions to the above benchmarking; more work on GEANT4.
- <u>Data needs</u>: low-energy pion/kaon/pbar spectra at E_p =2-7 GeV; neutrons in fragmentation region; light fragment yields; nuclide yields for difficult cases; more ion and photon induced reactions.

 RESMM'12, Fermilab, Feb. 13-15, 2012

Nucleon Displacement x-section in Al and Cu

A. Konobeev BCA-MD and pure NRT models can differ by a factor of two

DPA and Radiation Damage: Status and Needs

- Modern models/codes which include Coulomb elastic scattering (crucial for high-Z projectiles), nuclear interactions, and same DPA model parameters agree quite well between each other and with (indirect) data. At the same time, industry standard NRT and state-of-the-art BCA-MD differ by a factor of 2 to 3 in some cases
- Models/codes: Strong dependencies on projectile type and energy (1 keV to a few GeV), projectile/target charge and nuclear form-factor and material properties to be further studied; work in progress in MARS on better low-energy neutron model; link DPA to changes in material properties
- <u>Data needs</u>: Annealed vs non-annealed defects; cryo temperatures!

Stopping power in compounds

There is no need to invent the wheel: the *Cores-and-Bonds* approach (CAB) was developed in 80s by G. Both *et al.*, Köln University.

$$S_{ion} \rightarrow S_p \rightarrow S_{p,Bragg}$$
, $S_{p,Bragg}$ (125 keV) and $S_{p,CAB}$ (125 keV)

 $S_{p,CAB}(125 \text{ keV}) = \sum Cores + \sum Bonds$

Cores: atoms from H to Cl.

Bonds: single like H-H, C-H etc, double like C=C, C=O etc, triple like C=C, O=O.

Radiation damage model in PHITS(3)

Improvement

(1)Transport

(2) Energy transfer to target recoil atom with Coulomb scattering

(3)Cascade damage approximation

Number of defects developed by NRT

M.J. Norgett, M.T. Robinson and I.M. Torrens: Nucl. Engineering and Design, 33, 50 (1975).

Integrating using dimensionless collision parameter t

Number of defects developed by NRT

 T_d : the value of the threshold displacement energy. 30 eV for Cu and

Example of dpa calculation

Mu2e hall MARS15 model

Requirements to Heat and Radiation Shield

- Absorber (heat and radiation shield) is intended to prevent radiation damage to the magnet coil material and ensure quench protection and acceptable heat loads for the lifetime of the experiment
 - Total dynamic heat load on the coils (100 W)
 - Peak power density in the coils
 - Peak radiation dose to the insulation and epoxy
 - DPA to describe how radiation affects the electrical conductivity of metals in the superconducting cable

DPA for nominal beam power baseline

Summary Table

	Quantity\Model	LAQGSM+CEM, MIN f.	LAQGSM+CEM,MA X f.	Default, MIN	
1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988	T. Neutron flux n/cm2/s	8.5E9	8.3E9	7.9E9	
	HE Neutron flux n/cm2/s	3.1E9	3.0E9	2.4E9	
	Power density, uW/g	16	17	9	
	DPA,/yr	3.1E-5	3.2E-5	2.4E-5	
	Absorbed dose, kGy/yr	330	330	170	
	-95- -100-			C.m.	
	200	300	400	500	
	PESMMMO Formilah Fob 13-15 2012	10 ⁵ Summary An	Padiation Effect Modeling - N VI Mokhov	16 16	

Radiation Heating in Magnets Determined Supports Magnet and Non-conventional Utility Design

Expected Life of Preseparator Magnets

Iron, W shields studied

Need to value-engineer shield

Average heating quoted, maximum values under study and are likely factors of several larger

	Iron Shield				W Shield					
Projectiles	O18	Ca48	Kr86	Xe136	U238	O18	Ca48	Kr86	Xe136	U238
Energy (Mev/nucleon)	266	239.5	233	222	203	266	239.5	233	222	203
	Expected Life [y]					Expected Life [y]				
Q1b (BDS)	1.7E+04	3.3E+04	6.3E+04	6.9E+04	9.0E+04		1.63E+04	2.72E+04	4.55E+04	4.55E+04
Q2b (BDS)										
Q3b (BDS)	3448	6784	11765	14493	19011		3401	5675	9452	5675
Q_D1013	2	4	5	68	6		9	15	32	6
Q_D1024	149	368	391	481	435		397	1323	2415	2778
Q_D1035	66	80	130	495	179		242	180	120	17
OCT_D1045	1818	1946	7364	495	4630		7003	11820	16077	14205
DV_1064	37	28	45	561	36		28	42	96	35
S_D1092	71	79	5	78	5		80	7	391	5
DV_D1108	3333	3731	706	867	2688		284	370	318	407
Q_D1137	2500	13228	994	2907	3067		2463	26178	25126	8532
Q_D1147	1333	2404	216	39	6570		16722	16835	3086	1381
Q_D1158	1333	7062	7645	72	21930		92593	6196	30	329
O_D1170	1048	30303	862	110	21645		45045	5675	12690	2841

Displacements Per Atom (DPA)

- To evaluate radiation damage, a fundamental parameter that characterizes lattice displacement events is required.
- Dpa has been used to compare radiation damage by different radiation sources. It is a damage-based exposure unit and represents the number of atoms displaced from their normal lattice sites as a result of energetic particle bombardment.
- Calculations of dpa values

$$N_d = \begin{cases} \frac{\kappa(T-E_e)}{2E_d} = \frac{\kappa T_{dam}}{2E_d}, & T_{dam} > 2E_d \\ 1, & E_d < T_{dam} < 2E_d \\ 0, & 0 < T_{dam} < E_d \end{cases}$$

$$dpa = \Phi \sigma = \Phi \int_{E_d}^{T_{\text{max}}} \Phi \frac{d\sigma(E, T)}{dT} N_d$$

- N_d is the number of displaced atoms produced by a PKA
- T is the recoil energy of a PKA; E_e is the total energy lost by electron excitation; k is the damage efficiency; T_{dam} is the damage energy available for elastic collisions; and E_d is the threshold displacement energy. $\sigma(E)$ is the displacement cross section for an incident particle at an energy E.

 Irradiation-induced changes of material properties are measured as a function of dpa

Radiation-induced Property Changes

- Radiation-induced microstructural changes significantly degrade materials' properties
 - Degradation of physical properties (increase in electrical resistivity, decrease in thermal conductivity, etc.)
 - Radiation hardening and embrittlement
 - Irradiation creep
 - Void swelling
 - High temperature He embrittlement
 - Reduction in fatigue performance, irradiation-assisted stress corrosion cracking
- Synergistic effects of radiation, corrosive media, temperature, and stress

Damage Correlation

- Dpa is a most commonly-used damage correlation parameter. However, damage correlation and data extrapolation must consider other aspects and base on a fundamental understanding
- Damage correlation parameters
 - Irradiation particle type, energy
 - Energy spectra
 - Flux or dose rate (dpa/s)
 - Fluence or dose (dpa)
 - Irradiation temperature
 - Transmutation (e.g. He, H)
 - Pulsed irradiation vs. continuous irradiation

Effect of Irradiation Temperature

 Irradiation at different temperatures can result in different defect structures

Dose = 0.64 dpa

Dose = $0.64 \, dpa$

Radiation Modeling and Benchmark Experiments

 Effective radiation damage correlation requires close coordination between experimental, theoretical and computational studies.

B. Wirth et al (2004)

Ion Irradiation and **Implantation**

- In situ TFM ion irradiation is a powerful tool for introducing disorders in materials and validate and verify computer models
 - Real-time observation of defect formation and evolution during irradiation
 - A wide range of techniques including imaging, electron diffraction, and spectroscopy
 - Well-controlled conditions (temperature, ion, ion energy, dose rate, dose)
 - High doses (e.g. 100 dpa) can be achieved in hours; irradiation dose rates can be varied over several orders of magnitude
 - Studies of single-parameter effects and synergistic effects of irradiation, temperature and stress

1000 kx, spatial res 0.25 nm, time res 0.03 sec.

Irradiation: All ions, 1 MeV max.

Loading: 20 – 1273 K, straining stage

Direct Comparison

 Quantitative, absolute comparisons between experiments and modeling at the same spatial and time scales is leading to the establishment of an accurate, reliable computer model.

- The spatially-dependent cluster dynamics model captured the essential physics of damage in irradiated Mo thin films.
- Iterative refinement of key material parameters with in situ ion irradiation data led to a more accurate cluster dynamic model.

Conclusions

- 1. Substantial progress over last few years with Monte-Carlo codes used in this field; in majority of cases integral values on particle yields, energy deposition and radiation field can be predicted with accuracy of < 10%.
- 2. Uncertainties of a factor of 2 or more still remain for differential values in some phase space regions as well as for values of DPA.
- 3. Data needs are identified for each class.
- 4. Comprehensive studies are performed on Mu2e, COMET, FRIB and Muon Collider.
- 5. Powerful tools, amazing results and their benchmarking were presented on radiation effects in nano-electronics; synergy and mutual interest in collaboration.
- 6. Moving from DPA to changes in materials: damage correlations; first direct benchmarking of DPA (MD model).

 RESMM'12, Fermilab, Feb. 13-15, 2012

 Summary on Radiation Effect Modeling N.V. Mokhov